skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Olney, Brooks"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Year after year, computing systems continue to grow in complexity at an exponential rate. While this can have far-ranging positive impacts on society, it has become extremely difficult to ensure the security of these systems in the field. Hardware security - in conjunction with more traditional cybersecurity topics like software and network security - is critical for designing secure systems. Moving forward, hardware security education must ensure the next generation of engineers have the knowledge and tools to address this growing challenge. A good foundation in hardware security draws on concepts from several different fields, including fundamental hardware design principles, signal processing and statistics, and even machine learning for modeling complex physical processes. It can be difficult to convey the material in a manageable way, even to advanced undergraduate students. In this paper, we describe how we have leveraged Python, and its rich ecosystem of open-source libraries, and scaffolding with Jupyter notebooks, to bridge the gap between theory and implementation of hardware security topics, helping students learn through experience. 
    more » « less
  2. With the rapid growth of the Internet of Things (IoT) and increasing reliance on network-connected devices, IoT security, which integrates components of hardware and cybersecurity, is more important than ever. Hence, we must improve and expand training opportunities for students in IoT security. Experiential learning is an essential component of education for engineering and cybersecurity in particular. In this work, we describe three comprehensive hands-on IoT security experiments built using off-the-shelf development boards which can provide a low-cost and accessible experiential learning opportunity for students in this area. 
    more » « less